The $\left[\mathrm{Os}_{3}(\mu-\mathrm{H})(\mathrm{CO})_{10}(\mathrm{MeCN})_{2}\right]+$ Cation : Synthesis and X-Ray Crystal Structure of $\left[\mathrm{Os}_{3}(\mu-\mathrm{H})(\mathrm{CO})_{10}(\mathrm{MeCN})_{2}\right]\left[\mathrm{Os}(\mathrm{CO})_{3} \mathrm{Cl}_{3}\right] \dagger$

Christopher E. Anson, Evert J. Ditzel, Mariano Fajardo, H. Diane Holden, Brian F. G. Johnson,* Jack Lewis,* José Puga, and Paul R. Raithby
University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW

Abstract

The clusters $\left[\mathrm{Os}_{3}(\mathrm{CO})_{11}(\mathrm{MeCN})\right]$ and $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{MeCN})_{2}\right.$] react with acids $\mathrm{HX}\left(\mathrm{X}=\mathrm{BF}_{4}\right.$ or $\left.\mathrm{PF}_{6}\right)$ to form the cationic derivatives $\left[\mathrm{Os}_{3}(\mu-\mathrm{H})(\mathrm{CO})_{11}(\mathrm{MeCN})\right] X$ and $\left[\mathrm{Os}_{3}(\mu-\mathrm{H})(\mathrm{CO})_{10}(\mathrm{MeCN})_{2}\right] \mathrm{X}$, respectively. The cluster $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{MeCN})_{2}\right.$] also reacts with dry HCl to form the salt $\left[\mathrm{Os}_{3}(\mu-\mathrm{H})\right.$ $\left.(\mathrm{CO})_{10}(\mathrm{MeCN})_{2}\right]\left[\mathrm{Os}(\mathrm{CO})_{3} \mathrm{Cl}_{3}\right]$. X-Ray analysis of this salt shows that the Os atoms in the cation lie at the vertices of an isosceles triangle. A hydride bridges the long Os-Os edge, and the two acetonitrile ligands occupy trans axial sites. Reaction of $\left[\mathrm{Os}_{3}(\mu-\mathrm{H})(\mu-\mathrm{OH})(\mathrm{CO})_{10}\right.$] with HBF_{4} in MeCN also produces $\left[\mathrm{Os}_{3}(\mu-\mathrm{H})(\mathrm{CO})_{10}(\mathrm{MeCN})_{2}\right]^{+}$. In this reaction direct attack of H^{+}on the co-ordinated OH^{-}ligand is considered to occur with the resultant liberation of $\mathrm{H}_{2} \mathrm{O}$. Treatment of $\left[\mathrm{Os}_{3}(\mu-\mathrm{H})(\mathrm{CO})_{10^{-}}\right.$ $\left.(\mathrm{MeCN})_{2}\right]^{+}$with $\left[\mathrm{Os}(\mathrm{CO})_{4}\right]^{2-}$ leads to the formation of the neutral complex $\left[\mathrm{Os}_{4} \mathrm{H}_{2}(\mathrm{CO})_{14}(\mathrm{MeCN})\right]$. The bridging hydride of the cation may also be replaced by a bridging nitrosyl ligand by reaction with NO^{+}.

Relatively few cationic clusters species have been fully characterised. ${ }^{1}$ However, these species have considerable potential for reaction with mononuclear and cluster anions to produce larger clusters. The inclusion in cluster cations of labile ligands, such as MeCN , which may be displaced easily to create vacant co-ordination sites, also enhances their reactivity. Previously, neutral clusters, such as $\left[\mathrm{Os}_{3}(\mathrm{CO})_{1_{1}-}\right.$ $(\mathrm{MeCN})]$ and $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{MeCN})_{2}\right]$, have been shown to undergo substitution reactions with a wide variety of molecules under mild conditions, by loss of the MeCN group. ${ }^{2}$ The tetraosmium cation $\left[\mathrm{Os}_{4} \mathrm{H}_{3}(\mathrm{CO})_{12}(\mathrm{MeCN})_{2}\right]^{+}$reacts readily with halide ions to give neutral cluster species, and with $\mathrm{NO}_{2}{ }^{-}$to give the anion $\left[\mathrm{Os} 4 \mathrm{H}(\mathrm{CO})_{12}(\mathrm{MeCN})_{2}\right]^{-}{ }^{3} \mathrm{We}$ now report on the synthesis of the related triosmium cations, $\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{11}(\mathrm{MeCN})\right]^{+}$and $\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{10}(\mathrm{MeCN})_{2}\right]^{+}$, formed by the reaction of $\left[\mathrm{Os}_{3}(\mathrm{CO})_{11}(\mathrm{MeCN})\right]$ or $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{MeCN})_{2}\right]$ with acids $\mathrm{HX}\left(\mathrm{X}=\mathrm{BF}_{4}\right.$ or $\left.\mathrm{PF}_{6}\right)$, and the formation of the neutral cluster $\left[\mathrm{Os}_{4} \mathrm{H}_{2}(\mathrm{CO})_{14}(\mathrm{MeCN})\right]$ by the reaction of $\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{10}(\mathrm{MeCN})_{2}\right]^{+}$with $\left[\mathrm{Os}(\mathrm{CO})_{4}\right]^{2-}$. The hydride ligand on the cationic cluster is also readily replaced by a nitrosyl group.

Results and Discussion

The mono-acetonitrile complex $\left[\mathrm{Os}_{3}(\mathrm{CO})_{11}(\mathrm{MeCN})\right]$, in MeCN , reacts with HPF_{6}, in diethyl ether, to produce the $\mathrm{PF}_{6}{ }^{-}$salt of the cation $\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{11}(\mathrm{MeCN})\right]^{+}$quantitatively. Similarly, reaction of the bis-acetonitrile complex $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10^{-}}\right.$ $\left.(\mathrm{MeCN})_{2}\right]$ with $\mathrm{HX}\left(\mathrm{X}=\mathrm{PF}_{6}{ }^{-}\right.$or BF_{4}^{-}) produces the corresponding bis-acetonitrile cation $\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{10}(\mathrm{MeCN})_{2}\right]^{+}$. In these reactions proton addition occurs directly on the central triangulo-osmium cluster. This behaviour is similar to that observed with the parent carbonyl, $\left[\mathrm{Os}_{3}(\mathrm{CO})_{12}\right]$, and its related substituted derivatives. ${ }^{4}$

The same cation $\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{10}(\mathrm{MeCN})_{2}\right]^{+}$is the product of the reaction of the hydroxy-bridged cluster $\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{OH})\right.$ $(\mathrm{CO})_{10}$] with HBF_{4} [equation (1)]. In this case electrophilic attack of H^{+}clearly occurs at the bridging OH group which

[^0]leads to the elimination of the cation $\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{10}(\mathrm{MeCN})_{2}\right]^{+}$. In contrast, addition to $\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{OH})(\mathrm{CO})_{10}\right]$ of strongly coordinating anions, X , such as Cl^{-}or $\mathrm{MeCO}_{2}{ }^{-}$leads to derivatives of the type $\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{10} \mathrm{X}\right.$], equation (2). ${ }^{5}$
\[

$$
\begin{align*}
& {\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{OH})(\mathrm{CO})_{10}\right] }+\mathrm{HBF}_{4} \xrightarrow{\mathrm{MeCN}} \\
& {\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{10}(\mathrm{MeCN})_{2}\right] \mathrm{BF}_{4}+\mathrm{H}_{2} \mathrm{O} } \tag{1}\\
& {\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{OH})(\mathrm{CO})_{10}\right] }+\mathrm{HX} \longrightarrow \\
&\left(\mathrm{X}=\mathrm{Cl}^{-} \text {or } \mathrm{MeCO}_{3}{ }^{-} \mathrm{H}(\mathrm{CO})_{10} \mathrm{X}\right]+\mathrm{H}_{2} \mathrm{O} \tag{2}
\end{align*}
$$
\]

A surprising reaction occurred when $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{MeCN})_{2}\right]$ was treated with gaseous HCl , giving the salt $\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{10^{-}}\right.$. $\left.(\mathrm{MeCN})_{2}\right]\left[\mathrm{Os}(\mathrm{CO})_{3} \mathrm{Cl}_{3}\right]$ in good yield [equation (3)]. The route by which this reaction occurs is unclear; however, this type of reaction is not unique. When $\left[\mathrm{Os}_{4} \mathrm{H}_{4}(\mathrm{CO})_{12}\right]$ is treated similarly with NO^{+}the salt $\left[\mathrm{Os}_{4} \mathrm{H}_{4}(\mathrm{OH})(\mathrm{CO})_{12}\right]\left[\mathrm{Os}(\mathrm{CO})_{3}-\right.$ $\left.\left(\mathrm{NO}_{3}\right)_{3}\right]$ is obtained in good yield. ${ }^{6}$ The reaction of $\left[\mathrm{Os}_{3}(\mathrm{CO})_{11^{-}}\right.$ (MeCN)] with gaseous HCl appears to be simpler. In this case the salt $\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{11}(\mathrm{MeCN})\right] \mathrm{Cl}$ is produced, and there is no evidence for the formation of the $\left[\mathrm{Os}(\mathrm{CO})_{3} \mathrm{Cl}_{3}\right]^{-}$anion.

$$
\begin{align*}
& {\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{MeCN})_{2}\right]+\mathrm{HCl} \longrightarrow} \\
& {\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{10}(\mathrm{MeCN})_{2}\right]\left[\mathrm{Os}(\mathrm{CO})_{3} \mathrm{Cl}_{3}\right]} \tag{3}
\end{align*}
$$

Prolonged exposure of $\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{10}(\mathrm{MeCN})_{2}\right]^{+}$to gaseous HCl results in the formation of the known cluster $\left[\mathrm{Os}_{3} \mathrm{H}-\right.$ $\left.(\mathrm{CO})_{10} \mathrm{Cl}\right] .{ }^{7}$

Treatment of the cation $\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{10}(\mathrm{MeCN})_{2}\right]^{+}$with the osmium carbonyl dianion $\left[\mathrm{Os}(\mathrm{CO})_{4}\right]^{-2}$, which may contain significant quantities of $\left[\mathrm{OsH}(\mathrm{CO})_{4}\right]^{-8}$, produces as one of the major products the neutral cluster $\left[\mathrm{Os}_{4} \mathrm{H}_{2}(\mathrm{CO})_{14}(\mathrm{MeCN})\right]$ [equation (4)], which has previously been obtained from the reaction of $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{MeCN})_{2}\right]$ with $\left[\mathrm{OsH}_{2}(\mathrm{CO})_{4}\right] .{ }^{9}$ The for-

$$
\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{10}(\mathrm{MeCN})_{2}\right]^{+}+\underset{\left.[\mathrm{Os})_{4} \mathrm{H}_{2}(\mathrm{CO})_{14}(\mathrm{MeCN})\right]}{\left[\mathrm{Os}(\mathrm{CO})_{4}\right]^{2-} \longrightarrow}
$$

mation of the tetranuclear osmium cluster from the triosmium cation by the addition of a mononuclear anion under mild conditions, in a manner similar to that observed previously for the reactions of a number of neutral osmium clusters with osmium anions,9 illustrates the potential for systematic cluster build up of the trinuclear cationic species.

Table 1. Spectroscopic data for the cluster complexes
Complex
$\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{11}\left(\mathrm{MeCN}^{2}\right)\right] \mathrm{PF}_{6}$
$\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{10}(\mathrm{MeCN})_{2}\right] \mathrm{BF}_{4}$
$\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{10}(\mathrm{MeCN})_{2}\right] \mathrm{PF}_{6}$
$\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{10}(\mathrm{MeCN})_{2}\right]\left[\mathrm{Os}(\mathrm{CO})_{3} \mathrm{Cl}_{3}\right]$
$\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{10}\left(\mathrm{PMe}_{3}\right)_{2}\right]\left[\mathrm{Os}(\mathrm{CO})_{3} \mathrm{Cl}_{3}\right]$
$\left[\mathrm{Os}_{3}(\mathrm{NO})(\mathrm{CO})_{10}(\mathrm{MeCN})_{2}\right] \mathrm{BF}_{4}$
$\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{19} \mathrm{Cl}\right]$

${ }^{1}$ H N.m.r. (τ)
${ }^{\circ} 26.85$ (s, 1 H),
7.28 (s, 3 H)
${ }^{d} 20.09(\mathrm{~s}, 1 \mathrm{H})$,
7.23(s, 6 H$)$
${ }^{\mathrm{b}} 24.25$ (s, 1 H),
7.37 (s, 6 H)
${ }^{b} 24.27$ (s, 1 H$)$,
7.32 (s, 6 H$)$
${ }^{\circ} 30.17$ [d, $1 \mathrm{H}, J(\mathrm{P}-\mathrm{H})=20 \mathrm{~Hz}$, $8.21(\mathrm{q}, 18 \mathrm{H})$

- $2124 \mathrm{~m}, 2090 \mathrm{vs}, 2072 \mathrm{vs}$, 2028 vs
$1646 \mathrm{~m}^{e}$
$2117 \mathrm{w}, 2078 \mathrm{vs}, 2069 \mathrm{~s}, \quad{ }^{\circ} 20.5(\mathrm{~s}, 1 \mathrm{H})$
1992 m
${ }^{a} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ solvent. ${ }^{b} \mathrm{CD}_{2} \mathrm{Cl}_{2}$ solvent. ${ }^{c} \mathrm{MeCN}$ solvent. ${ }^{d}\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}$ solvent. ${ }^{e} v(\mathrm{NO})$.

The bridging hydrido-ligand in $\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{10}(\mathrm{MeCN})_{2}\right]^{+}$ can be replaced by a nitrosyl group by its reaction with NO^{+}[equation (5)]. The ${ }^{1} \mathrm{H}$ n.m.r. spectrum of the reaction mixture shows the loss of the hydride signal, while the i.r.

spectrum exhibits a signal at $1646 \mathrm{~cm}^{-1}$ which is indicative of a bridging NO group co-ordinated to a cationic species.

The neutral cluster $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{MeCN})_{2}\right]$ readily undergoes substitution with PMe_{3}, in tetrahydrofuran (thf), by loss of acetonitrile to give $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mathrm{PMe}_{3}\right)_{2}\right]$ as the major product; a small amount of the trisubstituted product $\left[\mathrm{Os}_{3}(\mathrm{CO})_{9}-\right.$ $\left.\left(\mathrm{PMe}_{3}\right)_{3}\right]$ is also obtained. $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mathrm{PMe}_{3}\right)_{2}\right]$, like $\left[\mathrm{Os}_{3}-\right.$ $(\mathrm{CO})_{10}(\mathrm{MeCN})_{2}$], undergoes reaction with gaseous HCl to give a salt, namely $\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{10}\left(\mathrm{PMe}_{3}\right)_{2}\right]\left[\mathrm{Os}(\mathrm{CO})_{3} \mathrm{Cl}_{3}\right]$.

The cationic species have been characterised by spectroscopic techniques (Table 1). The i.r. spectrum of $\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{11^{-}}\right.$ $(\mathrm{MeCN})] \mathrm{PF}_{6}$ exhibits six bands in the region $2150-2000$ cm^{-1}. The ${ }^{1} \mathrm{H}$ n.m.r. spectrum (in CDCl_{3}) shows resonances at $\tau 26.85(\mathrm{~s}, 1 \mathrm{H})$ and $7.28(\mathrm{~s}, 3 \mathrm{H})$ corresponding to the hydride and the co-ordinated MeCN ligand respectively. For $\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{10}(\mathrm{MeCN})_{2}\right] \mathrm{PF}_{6}$ the i.r. spectrum is comparatively simple exhibiting two strong and three weak absorptions in the $2150-2000 \mathrm{~cm}^{-1}$ region. The ${ }^{1} \mathrm{H}$ n.m.r. spectrum $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 30^{\circ} \mathrm{C}\right)$ shows a singlet at $\tau 7.37$ which may be assigned to two equivalent MeCN ligands and a singlet at $\tau 24.25$ attributable to the hydrido-ligand.

In order to establish the molecular geometry of the cationic species and to confirm the nature of the anion in the reaction of $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{MeCN})_{2}\right]$ with gaseous HCl an X-ray crystalstructure analysis of the reaction product was undertaken. The Figure shows the discrete $\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{10}(\mathrm{MeCN})_{2}\right]^{+}$and [$\left.\mathrm{Os}(\mathrm{CO})_{3} \mathrm{Cl}_{3}\right]^{-}$units together with the atom-labelling scheme adopted. There are no abnormally short intermolecular contacts between the cations and anions. The final bond lengths and interbond angles are presented in Tables 2 and 3, respectively.

In the cation the Os atoms lie at the vertices of an isosceles triangle with the two MeCN ligands occupying trans axial sites on two of the three metal atoms. The metal-metal distance [$\mathrm{Os}(2)-\mathrm{Os}(3)$] between the two Os atoms bonded to the MeCN ligands is relatively long, being ca. $0.12 \AA$ longer than the average value of $2.884(3) \AA$ for the other two $\mathrm{Os}^{-\mathrm{Os}}$

Figure. The molecular structure of $\left[\mathrm{Os}_{3}(\mu-\mathrm{H})(\mathrm{CO})_{10}(\mathrm{MeCN})_{2}\right]-$ $\left[\mathrm{Os}(\mathrm{CO})_{3} \mathrm{Cl}\right]_{3}$] showing the atom-numbering scheme
distances. The $\mathrm{Os}(2)-\mathrm{Os}(3)$ bond is also ca. $0.13 \AA$ longer than the average $\mathrm{Os}-\mathrm{Os}$ bond length of $2.877(3) \AA$ in the parent binary carbonyl, $\left[\mathrm{Os}_{3}(\mathrm{CO})_{12}\right.$]. ${ }^{10}$ Long $\mathrm{Os}-\mathrm{Os}$ distances are associated with the presence of bridging hydrido-ligands when no other bridging groups span the same metal-metal bond, ${ }^{11}$ and in this case the presence of a hydride bridging the $\mathrm{Os}(2)^{-}$ Os(3) edge is confirmed by an analysis of the ligand distribution round the cluster. The equatorial carbonyl groups [C(22)$\mathrm{O}(22)$ and $\mathrm{C}(31) \mathrm{O}(31)$] adjacent to the $\mathrm{Os}(2)-\mathrm{Os}(3)$ edge bend away from it, as shown by the average $\mathrm{Os}^{-} \mathrm{Os}^{-} \mathrm{C}$ angle of $118(2)^{\circ}$ when compared to the average cis $\mathrm{Os}^{-}-\mathrm{Os}-\mathrm{C}$ angle of $93(2)^{\circ}$ for the other two $\mathrm{Os}^{-} \mathrm{Os}$ bonds. The $\mathrm{Os}(1)-\mathrm{Os}(2)$ and $\mathrm{Os}(1)-\mathrm{Os}(3)$ bond lengths are slightly longer than the similar $\mathrm{Os}^{-}-\mathrm{Os}$ bonds [average 2.877 (3) \AA], between the Os atoms bonded to the MeCN groups and the tetracarbonyl-co-ordinated Os atom, in the related neutral cluster $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10^{-}}\right.$

Table 2. Bond lengths (\AA) for $\left[\mathrm{Os}_{3}(\mu-\mathrm{H})(\mathrm{CO})_{10}(\mathrm{MeCN})_{2}\right][\mathrm{Os}-$ $(\mathrm{CO})_{3} \mathrm{Cl}_{3}$]

$\mathrm{Os}(1)-\mathrm{Os}(2)$	$2.886(2)$	$\mathrm{Os}(1)-\mathrm{Os}(3)$	$2.882(2)$
$\mathrm{Os}(1)-\mathrm{C}(11)$	$1.957(22)$	$\mathrm{Os}(1)-\mathrm{C}(12)$	$1.869(29)$
$\mathrm{Os}(1)-\mathrm{C}(13)$	$1.902(23)$	$\mathrm{Os}(1)-\mathrm{C}(14)$	$1.946(22)$
$\mathrm{Os}(2)-\mathrm{Os}(3)$	$3.002(2)$	$\mathrm{Os}(2)-\mathrm{C}(21)$	$1.939(26)$
$\mathrm{Os}(2)-\mathrm{C}(22)$	$1.853(2)$	$\mathrm{Os}(2)-\mathrm{C}(23)$	$1.02(24)$
$\mathrm{Os}(2)-\mathrm{N}(1)$	$2.071(17)$	$\mathrm{N}(1)-\mathrm{C}(1)$	$1.145(28)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.475(32)$	$\mathrm{Os}(3)-\mathrm{C}(31)$	$1.893(32)$
$\mathrm{Os}(3)-\mathrm{C}(32)$	$1.809(23)$	$\mathrm{Os}(3)-\mathrm{C}(33)$	$1.873(22)$
$\mathrm{Os}(3)-\mathrm{N}(2)$	$2.072(19)$	$\mathrm{N}(2)-\mathrm{C}(3)$	$1.145(31)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.528(36)$	$\mathrm{C}(11)-\mathrm{O}(11)$	$1.134(27)$
$\mathrm{C}(12)-\mathrm{O}(12)$	$1.161(37)$	$\mathrm{C}(13)-\mathrm{O}(13)$	$1.154(29)$
$\mathrm{C}(14)-\mathrm{O}(14)$	$1.141(28)$	$\mathrm{C}(21)-\mathrm{O}(21)$	$1.076(32)$
$\mathrm{C}(22)-\mathrm{O}(22)$	$1.190(28)$	$\mathrm{C}(23)-\mathrm{O}(23)$	$1.193(29)$
$\mathrm{C}(31)-\mathrm{O}(31)$	$1.159(40)$	$\mathrm{C}(32)-\mathrm{O}(32)$	$1.202(29)$
$\mathrm{C}(33)-\mathrm{O}(33)$	$1.157(27)$	$\mathrm{Os}(4)-\mathrm{Cl}(1)$	$2.414(7)$
$\mathrm{Os}(4)-\mathrm{Cl}(2)$	$2.360(9)$	$\mathrm{Os}(4)-\mathrm{Cl}(3)$	$2.385(10)$
$\mathrm{Os}(4)-\mathrm{C}(41)$	$2.012(95)$	$\mathrm{Os}(4)-\mathrm{C}(42)$	$1.872(26)$
$\mathrm{Os}(4)-\mathrm{C}(43)$	$1.973(37)$	$\mathrm{C}(41)-\mathrm{O}(41)$	$0.905(102)$
$\mathrm{C}(42)-\mathrm{O}(42)$	$1.180(100)$	$\mathrm{C}(43)-\mathrm{O}(43)$	$0.949(52)$

$\left.(\mathrm{MeCN})_{2}\right]{ }^{12}$ which may reflect the positive charge on the former complex.
The average $\mathrm{Os}^{-} \mathrm{N}$ distance of 2.07(2) \AA for the two axially co-ordinated MeCN groups is shorter than the average $\mathrm{Os}^{-\mathrm{N}}$ distance of $2.13(2) \AA$ for the bis-acetonitrile complex $\left[\mathrm{Os}_{3}-\right.$ $(\mathrm{CO})_{10}(\mathrm{MeCN})_{2}$, but similar to the value of $2.07(2) \AA$ for the single axially-co-ordinated MeCN ligand in the monoacetonitrile complex $\left[\mathrm{Os}_{3}(\mathrm{CO})_{11}(\mathrm{MeCN})\right] .{ }^{12}$ The $\mathrm{Os}^{-} \mathrm{N}$ bonds in $\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{10}(\mathrm{MeCN})_{2}\right]^{+}$are also shorter than the two values of $2.10(2)$ and $2.13(1) \AA$ for the $\mathrm{Os}^{-} \mathrm{N}$ bonds in the tetraosmium cation $\left[\mathrm{Os}_{4} \mathrm{H}_{3}(\mathrm{CO})_{12}(\mathrm{MeCN})_{2}\right]^{+} .{ }^{3}$

The acetonitrile and carbonyl ligands in $\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{10^{-}}\right.$ $\left.(\mathrm{MeCN})_{2}\right]^{+}$are all essentially linear and do not deviate from precise linearity by more than 4σ. The $\mathrm{Os}-\mathrm{C}$ (carbonyl) bond lengths in $\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{10}(\mathrm{MeCN})_{2}\right]^{+}$show similar trends to those observed in $\left[\mathrm{Os}_{3}(\mathrm{CO})_{11}(\mathrm{MeCN})\right]$ and $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10^{-}}\right.$ $\left.(\mathrm{MeCN})_{2}\right]^{12}$ The $\mathrm{Os}-\mathrm{C}$ lengths trans to the axial acetonitrile groups are relatively short, reflecting the inability of the acetonitrile to accept back-donated density from the metals. By contrast, the $\mathrm{Os}^{-} \mathrm{C}$ lengths of the trans axial carbonyls on $\mathrm{Os}(1)$ are relatively long because both CO groups are competing for back donation from the metal. The $\mathrm{Os}-\mathrm{C}$ distances for the equatorial carbonyls, which are trans to $\mathrm{Os}^{-}-\mathrm{Os}$ bonds, are intermediate in length.

The $\left[\mathrm{Os}(\mathrm{CO})_{3} \mathrm{Cl}_{3}\right]^{-}$anion adopts the fac configuration similar to that observed for the anion in the salt $\left[\mathrm{Os}_{4} \mathrm{H}_{4}(\mathrm{OH})\right.$ $\left.(\mathrm{CO})_{12}\right]\left[\mathrm{Os}(\mathrm{CO})_{3}\left(\mathrm{NO}_{3}\right)_{3}\right]{ }^{7}$ The anion shows some thermal disorder, but the co-ordination geometry about the Os atom is close to idealised octahedral. The average $\mathrm{Os}-\mathrm{Cl}$ bond length of $2.39(2) \AA$ is not significantly different from the value of $2.38 \AA$ reported for the $\mathrm{Os}-\mathrm{Cl}$ bonds in the $\left[\mathrm{OsO}_{2} \mathrm{Cl}_{4}\right]^{2-}$ anion, ${ }^{13}$ where each Cl atom is trans to another. The $\mathrm{Os}-\mathrm{C}-$ (carbonyl) bonds [average 1.95(5) \AA] are somewhat longer than the equivalent bonds in the $\left[\mathrm{Os}(\mathrm{CO})_{3}\left(\mathrm{NO}_{3}\right)_{3}\right]^{-}$anion [average $1.87(2) \AA$] where each carbonyl is trans to a monodentate nitrate group.

Experimental

Solvents were distilled over calcium hydride and deoxygenated before use. The clusters $\left[\mathrm{Os}_{3}(\mathrm{CO})_{11}(\mathrm{MeCN})\right]$ and $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10^{-}}\right.$ $(\mathrm{MeCN})_{2}$] were prepared by literature methods. ${ }^{2}$ I.r. spectra were recorded on a Perkin-Elmer 257 spectrophotometer using carbon monoxide as calibrant. ${ }^{1} \mathrm{H}$ N.m.r. spectra were obtained on a Varian CFT-20 spectrophotometer.

Table 3. Bond angles $\left({ }^{\circ}\right)$ in $\left[\mathrm{Os}_{3}(\mu-\mathrm{H})(\mathrm{CO})_{10}(\mathrm{MeCN})_{2}\right]\left[\mathrm{Os}(\mathrm{CO})_{3} \mathrm{Cl}_{3}\right]$

$\mathrm{Os}(2)-\mathrm{Os}(1)-\mathrm{Os}(3)$	62.7(1)	$\mathrm{Os}(2)-\mathrm{Os}(1)-\mathrm{C}(11)$	86.4(7)
$\mathrm{Os}(3)-\mathrm{Os}(1)-\mathrm{C}(11)$	90.5(7)	$\mathrm{Os}(2)-\mathrm{Os}(1)-\mathrm{C}(12)$	98.2(9)
$\mathrm{Os}(3)-\mathrm{Os}(1)-\mathrm{C}(12)$	160.7(9)	$\mathrm{C}(11)-\mathrm{Os}(1)-\mathrm{C}(12)$	$90.9(11)$
$\mathrm{Os}(2)-\mathrm{Os}(1)-\mathrm{C}(13)$	$161.2(7)$	$\mathrm{Os}(3)-\mathrm{Os}(1)-\mathrm{C}(13)$	98.5(7)
$\mathrm{C}(11)-\mathrm{Os}(1)-\mathrm{C}(13)$	93.4(9)	$\mathrm{C}(12)-\mathrm{Os}(1)-\mathrm{C}(13)$	100.6(11)
$\mathrm{Os}(2)-\mathrm{Os}(1)-\mathrm{C}(14)$	89.9(7)	$\mathrm{Os}(3)-\mathrm{Os}(1)-\mathrm{C}(14)$	85.8(7)
$\mathrm{C}(11)-\mathrm{Os}(1)-\mathrm{C}(14)$	175.7(10)	$\mathrm{C}(12)-\mathrm{Os}(1)-\mathrm{C}(14)$	$91.8(11)$
$\mathrm{C}(13)-\mathrm{Os}(1)-\mathrm{C}(14)$	89.3(9)	$\mathrm{Os}(1)-\mathrm{Os}(2)-\mathrm{Os}(3)$	58.6(1)
$\mathrm{Os}(1)-\mathrm{Os}(2)-\mathrm{C}(21)$	86.4(7)	$\mathrm{Os}(3)-\mathrm{Os}(2)-\mathrm{C}(21)$	144.9(7)
$\mathrm{Os}(1)-\mathrm{Os}(2)-\mathrm{N}(1)$	91.8(5)	$\mathrm{Os}(3)-\mathrm{Os}(2)-\mathrm{N}(1)$	87.4(5)
$\mathrm{C}(21)-\mathrm{Os}(2)-\mathrm{N}(1)$	92.1(9)	$\mathrm{Os}(1)-\mathrm{Os}(2)-\mathrm{C}(22)$	176.6(6)
$\mathrm{Os}(3)-\mathrm{Os}(2)-\mathrm{C}(22)$	118.4(7)	$\mathrm{C}(21)-\mathrm{Os}(2)-\mathrm{C}(22)$	96.7(10)
$\mathrm{N}(1)-\mathrm{Os}(2)-\mathrm{C}(22)$	89.7(8)	$\mathrm{Os}(1)-\mathrm{Os}(2)-\mathrm{C}(23)$	89.3(8)
$\mathrm{Os}(3)-\mathrm{Os}(2)-\mathrm{C}(23)$	91.4(7)	$\mathrm{C}(21)-\mathrm{Os}(2)-\mathrm{C}(23)$	90.1(11)
$\mathrm{N}(1)-\mathrm{Os}(2)-\mathrm{C}(23)$	177.7(10)	$\mathrm{C}(22)-\mathrm{Os}(2)-\mathrm{C}(23)$	89.2(10)
s(1)-Os(3)-Os(2)	58.7(1)	$\mathrm{Os}(1)-\mathrm{Os}(3)-\mathrm{C}(31)$	176.3(9)
$s(2)-\mathrm{Os}(3)-\mathrm{C}(31)$	117.6(9)	$\mathrm{Os}(1)-\mathrm{Os}(3)-\mathrm{N}(2)$	90.4(6)
$\mathrm{Os}(2)-\mathrm{Os}(3)-\mathrm{N}(2)$	87.8(5)	$\mathrm{C}(31)-\mathrm{Os}(3)-\mathrm{N}(2)$	88.9(11)
$\mathrm{Os}(1)-\mathrm{Os}(3)-\mathrm{C}(32)$	87.3(8)	$\mathrm{Os}(2)-\mathrm{Os}(3)-\mathrm{C}(32)$	145.9(8)
$\mathrm{C}(31)-\mathrm{Os}(3)-\mathrm{C}(32)$	96.4(12)	$\mathrm{N}(2)-\mathrm{Os}(3)-\mathrm{C}(32)$	92.3(9)
$\mathrm{Os}(1)-\mathrm{Os}(3)-\mathrm{C}(33)$	91.1(7)	$\mathrm{Os}(2)-\mathrm{Os}(3)-\mathrm{C}(33)$	92.5(7)
$\mathrm{C}(31)-\mathrm{Os}(3)-\mathrm{C}(33)$	89.6(12)	$\mathrm{N}(2)-\mathrm{Os}(3)-\mathrm{C}(33)$	178.4(9)
$\mathrm{C}(32)-\mathrm{Os}(3)-\mathrm{C}(33)$	88.4(10)	$\mathrm{Os}(1)-\mathrm{C}(11)-\mathrm{O}(11)$	175.5(21)
$\mathrm{Os}(1)-\mathrm{C}(12)-\mathrm{O}(12)$	175.4(21)	$\mathrm{Os}(1)-\mathrm{C}(13)-\mathrm{O}(13)$	174.0(21)
$\mathrm{Os}(1)-\mathrm{C}(14)-\mathrm{O}(14)$	177.3(22)	$\mathrm{Os}(2)-\mathrm{C}(21)-\mathrm{O}(21)$	179.1 (25)
$\mathrm{Os}(2)-\mathrm{N}(1)-\mathrm{C}(1)$	175.0(16)	$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	177.4(22)
$\mathrm{Os}(2)-\mathrm{C}(22)-\mathrm{O}(22)$	177.9(19)	$\mathrm{Os}(2)-\mathrm{C}(23)-\mathrm{O}(23)$	173.3(21)
$\mathrm{Os}(3)-\mathrm{C}(31)-\mathrm{O}(31)$	176.1(23)	$\mathrm{Os}(3)-\mathrm{N}(2)-\mathrm{C}(3)$	171.2(20)
$\mathrm{N}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	177.9(24)	$\mathrm{Os}(3)-\mathrm{C}(32)-\mathrm{O}(32)$	177.1(22)
$\mathrm{Os}(3)-\mathrm{C}(33)-\mathrm{O}(33)$	178.5(19)	$\mathrm{Cl}(1)-\mathrm{Os}(4)-\mathrm{Cl}(2)$	88.1 (3)
$\mathrm{Cl}(1)-\mathrm{Os}(4)-\mathrm{Cl}(3)$	$89.2(1)$	$\mathrm{Cl}(2)-\mathrm{Os}(4)-\mathrm{Cl}(3)$	87.0(5)
$\mathrm{Cl}(1)-\mathrm{Os}(4)-\mathrm{C}(41)$	$87.2(27)$	$\mathrm{Cl}(2)-\mathrm{Os}(4)-\mathrm{C}(41)$	82.1(26)
$\mathrm{Cl}(3)-\mathrm{Os}(4)-\mathrm{C}(41)$	168.6(26)	$\mathrm{Cl}(1)-\mathrm{Os}(4)-\mathrm{C}(42)$	175.7(8)
$\mathrm{Cl}(2)-\mathrm{Os}(4)-\mathrm{C}(42)$	88.0(8)	$\mathrm{Cl}(3)-\mathrm{Os}(4)-\mathrm{C}(42)$	89.1(9)
$\mathrm{C}(41)-\mathrm{Os}(4)-\mathrm{C}(42)$	93.7(28)	$\mathrm{Cl}(1)-\mathrm{Os}(4)-\mathrm{C}(43)$	87.8(11)
$\mathrm{Cl}(2)-\mathrm{Os}(4)-\mathrm{C}(43)$	170.0(11)	$\mathrm{Cl}(3)-\mathrm{Os}(4)-\mathrm{C}(43)$	83.8(12)
$\mathrm{C}(41)-\mathrm{Os}(4)-\mathrm{C}(43)$	106.8(28)	$\mathrm{C}(42)-\mathrm{Os}(4)-\mathrm{C}(43)$	95.9(13)
$\mathrm{O}(41)-\mathrm{C}(41)-\mathrm{Os}(4)$	145.8(90)	$\mathrm{O}(43)-\mathrm{C}(43)-\mathrm{Os}(4)$	155.8(40)
$\mathrm{Cl}(1)-\mathrm{Os}(4)-\mathrm{Cl}(2)$	88.1(3)	$\mathrm{Cl}(1)-\mathrm{Os}(4)-\mathrm{Cl}(3)$	89.2 (3)
$\mathrm{Cl}(2)-\mathrm{Os}(4)-\mathrm{Cl}(3)$	87.0(5)	$\mathrm{Cl}(1)-\mathrm{Os}(4)-\mathrm{C}(41)$	87.2(27)
$\mathrm{Cl}(2)-\mathrm{Os}(4)-\mathrm{C}(41)$	82.1 (26)	$\mathrm{Cl}(3)-\mathrm{Os}(4)-\mathrm{C}(41)$	168.6(26)
$\mathrm{Cl}(1)-\mathrm{Os}(4)-\mathrm{C}(42)$	175.7(8)	$\mathrm{Cl}(2)-\mathrm{Os}(4)-\mathrm{C}(42)$	88.0 (8)
$\mathrm{Cl}(3)-\mathrm{Os}(4)-\mathrm{C}(42)$	89.1 (9)	$\mathrm{C}(41)-\mathrm{Os}(4)-\mathrm{C}(42)$	93.7(28)
$\mathrm{Cl}(1)-\mathrm{Os}(4)-\mathrm{C}(43)$	87.8(11)	$\mathrm{Cl}(2)-\mathrm{Os}(4)-\mathrm{C}(43)$	170.0(11)
$\mathrm{Cl}(3)-\mathrm{Os}(4)-\mathrm{C}(43)$	$83.8(12)$	$\mathrm{C}(41)-\mathrm{Os}(4)-\mathrm{C}(43)$	106.8(28)
$\mathrm{C}(42)-\mathrm{Os}(4)-\mathrm{C}(43)$	95.9(13)		

Preparation of $\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{10}(\mathrm{MeCN})_{2}\right] \mathrm{BF}_{4}$.-The cluster $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{MeCN})_{2}\right](42.0 \mathrm{mg}, 0.045 \mathrm{mmol})$ was dissolved in acetonitrile ($10 \mathrm{~cm}^{3}$) and 3-4 drops of HBF_{4} in diethyl ether solution were added. The reaction was instantaneous with the solution changing from dark to light yellow. The acetonitrile was removed under vacuum and the residue washed with hexane and ether. The compound was recrystallised from hot chloroform (yield 85%) (Found: C, 15.60 ; H, 0.95 ; N, 2.35. Calc. for $\mathrm{C}_{14} \mathrm{H}_{7} \mathrm{BF}_{4} \mathrm{~N}_{2} \mathrm{O}_{10} \mathrm{Os}_{3}$: C, $15.80 ; \mathrm{H}, 0.70 ; \mathrm{N}, 2.45 \%$).

Preparation of $\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{10}(\mathrm{MeCN})_{2}\right]\left[\mathrm{Os}(\mathrm{CO})_{3} \mathrm{Cl}_{3}\right]$.-Into a suspension of $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{MeCN})_{2}\right](200 \mathrm{mg}, 0.21 \mathrm{mmol})$ in dry hexane at $40-50^{\circ} \mathrm{C}$, was bubbled a stream of gaseous HCl . After 30 min the yellow-brown solid had changed to yellow crystals. After removal of the solvent and recrystallisation from acetone-dichloromethane, the salt was obtained in quantitative yield (Found: C, $15.55 ; \mathrm{N}, 2.10 ; \mathrm{H}, 0.55$. Calc. for $\mathrm{C}_{17} \mathrm{H}_{7} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{O}_{13} \mathrm{Os}_{4}$: C, $15.50 ; \mathrm{N}, 2.15 ; \mathrm{N}, 0.55 \%$).

Preparation of $\left[\mathrm{Os}_{4} \mathrm{H}_{2}(\mathrm{CO})_{14}(\mathrm{MeCN})\right]$.-The salt $\left[\mathrm{Os}_{3} \mathrm{H}^{-}\right.$ $\left.(\mathrm{CO})_{10}(\mathrm{MeCN})_{2}\right] \mathrm{BF}_{4}(60 \mathrm{mg}, 0.052 \mathrm{mmol})$ was dissolved in thf
($35 \mathrm{~cm}^{3}$). Excess $\left[\mathrm{Os}(\mathrm{CO})_{4}\right]^{2-}$ was added and the mixture stirred for 30 min . The reaction was followed by i.r. spectroscopy and spot t.l.c. until the i.r. bands due to the cation had disappeared. The solution was filtered through a sinter to remove the undissolved $\left[\mathrm{Os}(\mathrm{CO})_{4}\right]^{2-}$ and stirring continued for 15 min . The solvent was removed under vacuum. The mixture was separated by t.l.c. using dichloromethanehexane ($30: 70$) as eluant. The compound with the highest R_{f} value was obtained in 25% yield and identified as the known compound $\left[\mathrm{Os}_{4} \mathrm{H}_{2}(\mathrm{CO})_{14}(\mathrm{MeCN})\right.$].

Addition of PMe_{3} to $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{MeCN})_{2}\right]$.-Trimethylphosphine ($0.05 \mathrm{~cm}^{3}$) was added to a thf solution of $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10^{-}}\right.$ $\left.(\mathrm{MeCN})_{2}\right]$. The mixture was stirred at room temperature and after 30 min a yellow-orange solution was obtained. The solvent was removed under a flow of N_{2}, the residue dissolved in a minimum quantity of dichloromethane, and the mixture separated by t.l.c. using light petroleum-dichloromethane ($1: 1$). Two main bands were obtained, the first (80% yield) was characterised as $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mathrm{PMe}_{3}\right)_{2}\right]\left(m / e^{+} 1008\right)$ and the second $(10 \%$ yield $)$ as $\left[\mathrm{Os}_{3}(\mathrm{CO})_{9}\left(\mathrm{PMe}_{3}\right)_{3}\right]\left(m / e^{+} 1056\right)$.

Preparation of $\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{10}\left(\mathrm{PMe}_{3}\right)_{2}\right]\left[\mathrm{Os}(\mathrm{CO})_{3} \mathrm{Cl}_{3}\right]$.- A current of HCl gas was bubbled through a hexane solution of $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mathrm{PMe}_{3}\right)_{2}\right](200 \mathrm{mg})$ at room temperature. The solution turned cloudy and a light yellow precipitate was obtained by solvent decantation. The solid was dried under vacuum (yield 100%) (Found: C, $16.45 ; \mathrm{H}, 1.40$. Calc. for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{Cl}_{3}-$ $\mathrm{O}_{13} \mathrm{Os}_{4} \mathrm{P}_{2}: \mathrm{C}, 16.50 ; \mathrm{H}, 1.45 \%$).

Reaction of $\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{10}(\mathrm{MeCN})_{2}\right]\left[\mathrm{Os}(\mathrm{CO})_{3} \mathrm{Cl}_{3}\right]$ with HCl . _-When gaseous HCl was bubbled through a freshly prepared hexane solution of $\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{10}(\mathrm{MeCN})_{2}\right]\left[\mathrm{Os}(\mathrm{CO})_{3} \mathrm{Cl}_{3}\right]$ and the mixture heated to reflux for 4 h , a yellow solution was obtained. The solvent was removed under a flow of nitrogen and the residue recrystallised from dichloromethane-hexane. The complex was identified as $\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{10} \mathrm{Cl}\right]$.

Preparation of $\left[\mathrm{Os}_{3}(\mathrm{NO})(\mathrm{CO})_{10}(\mathrm{MeCN})_{2}\right] \mathrm{BF}_{4}$ - - A mixture of $\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{10}(\mathrm{MeCN})_{2}\right]\left[\mathrm{Os}(\mathrm{CO})_{3} \mathrm{Cl}_{3}\right](100 \mathrm{mg}, 0.07 \mathrm{mmol})$ and freshly sublimed $\mathrm{NOBF}_{4}(12.2 \mathrm{mg}, 0.10 \mathrm{mmol})$ was stirred in dry thf for 8 h at room temperature, during which time the solution changed from yellow to orange-red. The solvent was removed under a fast stream of nitrogen, and the residue recrystallised from dichloromethane to give the product (yield 60%).

Crystal Structure Determination of $\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{10}(\mathrm{MeCN})_{2}\right]$ $\left[\mathrm{Os}(\mathrm{CO})_{3} \mathrm{Cl}_{3}\right]$.- Suitable single crystals were obtained as orange blocks and a crystal with dimensions ca. $0.40 \times 0.25 \times$ 0.25 mm was sealed in a $0.5-\mathrm{mm}$ Lindemann capillary.

Crystal data. $\mathrm{C}_{17} \mathrm{H}_{1} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{O}_{13} \mathrm{Os}_{4}, \quad M=1314.40$, monoclinic, $\quad a=9.825(7), \quad b=21.751(12), \quad c=13.715(10) \quad \AA$, $\beta=90.72(6)^{\circ}, U=2930.9(10) \AA^{3}$ (by least-squares refinement for 60 automatically-centred reflections in the range $20<2 \theta<25^{\circ}$), space group $P 2_{1} / n$ (alternative $P 2_{1} / c$, no. 14), $Z=4, \quad D_{\mathrm{c}}=2.98 \mathrm{~g} \mathrm{~cm}^{-3}, \quad D_{\mathrm{m}}$ not measured, $F(000)=$ 2 208, Mo- K_{α} radiation, $\lambda=0.71069 \AA, \mu\left(\mathrm{Mo}-K_{\alpha}\right)=$ $175.85 \mathrm{~cm}^{-1}$.

Data collection and processing. For details of data collection techniques see ref. 14: Stoe four-circle diffractometer, $\omega / 2 \theta$ scan mode with ω scan width 1.2°, scan speed $0.025-0.1^{\circ} \mathrm{s}^{-1}$, graphite-monochromated Mo- K_{α} radiation; 5652 reflections measured ($5.0 \leqslant 2 \theta \leqslant 50.0^{\circ},+h,+k, \pm l$), 5167 unique [merging $R=0.042$ after absorption correction (max., min. transmission factors $=0.071,0.018$], giving 5167 with $F>3 \sigma(F)$. No significant crystal deterioration occurred during data collection.

Table 4. Atom co-ordinates $\left(\times 10^{4}\right)$ for $\left[\mathrm{Os}_{3}(\mu-\mathrm{H})(\mathrm{CO})_{10}(\mathrm{MeCN})_{2}\right]-$ $\left[\mathrm{Os}(\mathrm{CO})_{3} \mathrm{Cl}_{3}\right.$]

Atom	X / a	Y / b	Z/c
Os(1)	$1968(1)$	$1921(1)$	2127(1)
Os(2)	$4133(1)$	$1791(1)$	$3553(1)$
Os(3)	$1223(1)$	$1938(1)$	$4152(1)$
C(11)	$1885(22)$	$1022(10)$	$2117(18)$
O(11)	$1866(16)$	503(7)	2050 (13)
C(12)	3 032(27)	1920 (13)	$1006(22)$
$\mathrm{O}(12)$	3641 (21)	$1886(10)$	289(17)
C(13)	200(23)	2 009(11)	1563 (18)
O(13)	-818(17)	2 084(8)	$1152(13)$
C(14)	2 091(22)	2811 (10)	2 239(18)
O(14)	2 163(17)	3 335(8)	2 266(14)
C(21)	5 342(25)	$1705(12)$	2 455(19)
$\mathrm{O}(21)$	$6026(18)$	1 655(8)	$1854(14)$
N(1)	3835 (16)	850(8)	$3637(13)$
C(2)	3 640(23)	-346(11)	$3792(18)$
C(1)	3 772(21)	326(10)	3 691(17)
C(22)	$5462(21)$	$1736(10)$	4520 (17)
$\mathrm{O}(22)$	$6345(17)$	1 695(8)	$5119(13)$
C(23)	4 374(23)	2 612(11)	3 531(19)
O(23)	4660 (16)	3 145(8)	$3559(12)$
C(31)	855(30)	$1952(14)$	5 504(23)
$\mathrm{O}(31)$	558(22)	$1947(10)$	6 319(17)
N(2)	$1563(18)$	2 878(9)	4 209(15)
C(3)	1743 (24)	3 388(11)	4 368(19)
C(4)	$1931(26)$	4 071(12)	4 599(21)
C(32)	-518(23)	2 043(10)	$3741(18)$
$\mathrm{O}(32)$	-1 681(18)	2 133(8)	3 497(14)
C(33)	921(21)	$1088(10)$	4 138(17)
O(33)	716(16)	564(7)	$4147(13)$
Os(4)	7 294(1)	4 653(1)	2749 (1)
$\mathrm{Cl}(1)$	5 503(7)	-8(4)	1 666(6)
$\mathrm{Cl}(2)$	8 496(9)	667(4)	2 028(8)
$\mathrm{Cl}(3)$	7 092(9)	-43(8)	3 857(7)
C(41)	8 242(95)	-423(42)	845(69)
O(41)	8 465(46)	-684(21)	358(33)
$\mathrm{C}(42)$	9 445(27)	- 549(12)	$2725(21)$
$\mathrm{O}(42)$	479(21)	-698(10)	3 097(17)
C(43)	6 842(36)	-1 132(17)	2 614(28)
$\mathrm{O}(43)$	6 599(36)	-1551(16)	$2535(28)$

Structure analysis and refinement. Centrosymmetric direct methods (Os atoms) were used followed by Fourier-difference techniques. Refinement was by blocked-cascade least squares with Os and Cl anisotropic. The weighting scheme $w=1 / \sigma^{2} F$ gave satisfactory agreement analyses. Final R and R^{\prime} values are 0.070 and 0.055 . Complex neutral-atom scattering factors were employed, ${ }^{15}$ and all computations were performed on the University of Cambridge IBM 3081 computer using a modified version of SHELX. ${ }^{16}$ The final atomic fractional co-ordinates are listed in Table 4.

Acknowledgements

We thank the S.E.R.C. for financial support and for a postdoctoral fellowship (to H. D. H.). M. F. is grateful to the Ministerio de Educacion y Ciencia (Spain) for a postdoctoral grant. E. J. D. is thankful to the Royal Commission for the Exhibition of 1851 and the New Zealand University Grants Committee for a studentship.

References

1 P. R. Raithby, 'Transition Metal Clusters,' ed. B. F. G. Johnson, Wiley, Chichester, 1980.
2 B. F. G. Johnson, J. Lewis, and D. A. Pippard, J. Chem. Soc., Dalton Trans., 1981, 407.

3 B. F. G. Johnson, J. Lewis, W. J. H. Nelson, J. Puga, P. R. Raithby, and K. H. Whitmire, J. Chem. Soc., Dalton Trans., 1983, 1339.
4 J. Knight and M. J. Mays, J. Chem. Soc. A, 1970, 711 ; A. J. Deeming, B. F. G. Johnson, and J. Lewis, ibid., 1970, 2967.
5 E. D. Komiets, V. A. Maksakov, L. K. Kedrova, N. I. Shakot'ko, and S. P. Gupin, Isv. Akad. Nauk. SSSR, Ser. Khim., 1983, 2, 435.
6 B. F. G. Johnson, J. Lewis, P. R. Raithby, and C. Zuccaro, J. Chem. Soc., Dalton Trans., 1980, 716.
7 M. R. Churchill and R. A. Lashewycz, Inorg. Chem., 1979, 18, 1926.

8 R. D. George, S. A. R. Knox, and F. G. A. Stone, J. Chem. Soc., Dalton Trans., 1973, 973.
9 E. J. Ditzel, H. D. Holden, B. F. G. Johnson, A. Sanders, and M. J. Taylor, J. Chem. Soc., Chem. Commun., 1982, 1373.

10 M. R. Churchill and B. G. DeBoer, Inorg. Chem., 1977, 16, 878. 11 M. R. Churchill, D. G. DeBoer, and F. J. Rotella, Inorg. Chem., 1976, 15, 1843.
12 P. A. Dawson, B. F. G. Johnson, J. Lewis, J. Puga, P. R. Raithby, and M. J. Rosales, J. Chem. Soc., Dalton Trans., 1982, 233. 13 F. H. Kruse, Acta Crystallogr., 1961, 14, 1035.
14 R. J. Goudsmit, B. F. G. Johnson, J. Lewis, P. R. Raithby, and M. J. Rosales, J. Chem. Soc., Dalton Trans., 1983, 2257; W. Clegg, Acta Crystallogr., Sect. A, 1981, 37, 22.
15 'International Tables for X-Ray Crystallography,' Kynoch Press, Birmingham, 1974, vol. 4.
16 SHELX 76, Crystal Structure Solving Package, G. M. Sheldrick, University of Cambridge, 1976.

Received 1st February 1984; Paper 4/183

[^0]: † 2,3-Bis(acetonitrile)-1,1,1,1,2,2,2,3,3,3-decacarbonyl-2,3- μ-hy-drido-triangulo-triosmium tricarbonyltrichloro-osmate(1-).
 Supplementary data available (No. SUP 56015, 3 pp.): thermal parameters. See Instructions for Authors, J. Chem. Soc., Dalton Trans., 1984, Issue 1, pp. xvii-xix. Structure factors are available from the editorial office.

